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Abstract

Elastic and plastic limit angular velocities are calculated for rotating disks of variable thickness in power function
form. Analytical solution is obtained and used to calculate elastic limit angular velocities of variable thickness rotating
annular disks and annular disks with rigid inclusion. An efficient numerical solution procedure is designed and used to
obtain the elastic limit angular velocities of variable thickness rotating solid disks. Von Mises yield criterion and its flow
rule is used to estimate plastic limit angular velocities. Both linear and nonlinear hardening material behaviors are
treated numerically. The results are verified by comparing with those of uniform thickness rotating solid disks available
in the literature. Elastic and plastic limit angular velocities are found to increase with the reduction of the disk thickness
at the edge as well as the reduction in the disk mass due to the shape of the profile. © 2002 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Estimation of elastic and especially plastic limit angular velocities in the design of disks rotating at high
speeds is an important subject due to a large number of applications in mechanical engineering. For this
reason, the theoretical investigation of stresses and displacement in such structures has been receiving
considerable attention and the topic was discussed in many standard textbooks (Calladine, 1969; Timo-
shenko and Goodier, 1970; Rees, 1990). The majority of the work in the area considers constant thickness
rotating solid or annular disks and uses Tresca’s yield condition and flow rule. Relatively fewer articles exist
in the literature employing von Mises yield criterion and its flow rule mainly because of the nonlinearities
inherent in this criterion. Among the numerous articles reporting the results of research conducted on the
subject, the most recent ones relevant to this investigation are reviewed below.

You et al. (1997, 1999) proposed a perturbation method and a power series method of solution for
estimating elastoplastic deformations of rotating uniform thickness disks. They employed von Mises yield
condition combined with a polynomial yield stress-equivalent strain relation, which describes nonlinear
hardening material behavior. Elastic—plastic stresses and displacement in a uniform thickness disk have
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been computed. The validity of the perturbation solution technique to handle the nonlinearity associated
with von Mises yield condition and assumed polynomial stress—strain relationship has been demonstrated
by comparison with finite element solution and analytical solution which uses Tresca’s yield condition. An
extension of this work was conducted by You et al. (2000) that combines this model with a Runge—Kutta
numerical solution procedure to compute elastic—plastic stresses in rotating disks of variable thickness and
density. The results reported by them concentrated on variable thickness and variable density annular disks
but the results of variable thickness solid disks were not presented.

Tresca’s yield condition and its associated flow rule was compared with von Mises criterion and flow rule
in estimating elastic—plastic and residual stresses of rotating constant thickness solid and annular disks by
Rees (1999). It is shown that for uniform thickness disks von Mises solution simplifies to a form which is
appropriate for Runge-Kutta solution, by the use of standard elliptical substitutions. Tresca’s yield con-
dition has been found to predict slightly lower limit angular velocities than that of von Mises.

The stresses and deformations of rotating constant and linearly varying thickness solid and annular disks
were studied by Ma et al. (2001). They used a unified yield criterion such that one of Tresca, von Mises or
Yu criterion could be obtained by a suitable adjustment of the weighting coefficient. Two of their results for
rotating solid and annular disks with a linear disk profile in the form 4(r) = 3 — 2r are compared with those
obtained in this work in the following sections. However, the constant radial and circumferential stresses
obtained by Ma et al. in the central portion of the disks fail to satisfy the equation of motion.

The stresses in the rotating hyperbolic disk with rigid inclusion were studied analytically by Giiven
(1998) using Tresca’s yield condition, its flow rule and linear hardening. The stresses in such variable
thickness disks have been found to be affected by the thickness parameter that defines the shape of the disk
profile.

In a recent work, Eraslan and Orcan (2002) studied elastic—plastic deformations of rotating solid disks of
exponentially varying thickness. An analytical solution has been obtained using Tresca’s yield condition
and its associated flow rule for linearly strain hardening. Their analysis indicated that, unlike constant
thickness disks, for steep disk profiles the radial stress at the central core exceeds circumferential stress.
Accordingly, the plastic zone develops away from the axis of the disk and propagates in all radial direc-
tions.

There appears only a few number of work in the literature investigating inelastic deformations of
variable thickness rotating disks using von Mises yield condition combined with nonlinear hardening. This
work attempts to perform a comprehensive study on inelastic as well as elastic deformations of variable
thickness annular and solid disks rotating at high speeds.

2. Elastic solution and elastic limit angular velocities

The disk is symmetric with respect to the mid-plane and its thickness varies according to
h(r) = (1 —np)* (2.1)

in which # = h/hj is the dimensionless thickness, /4 thickness at the axis of the disk, 7 = /b dimensionless
radial coordinate, b radius of the disk, » and k are dimensionless thickness parameters. The thickness of the
disk is assumed to be sufficiently small compared to its diameter so that plane stress assumption is justified.
With this form of the disk profile function, uniform thickness disk can be obtained by setting either n = 0 or
k = 0 and a linearly decreasing thickness can be obtained by simply setting £k = 1. Furthermore, if £ < 1 the
profile is convex and it is concave if k£ > 1.

A state of plane stress (o, = 0) and infinitesimal deformations are presumed. Using the formal dimen-
sionless variables: dimensionless stress G;; = ¢/0¢ and dimensionless angular velocity Q = wb+/p/ay, the
equation of motion in dimensionless form reads
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d - 7= | 7022
T (h76,) — hoy + hQ7 =0 (2.2)
7

where g, stands for the yield limit, o constant angular velocity and p mass density. The geometric relations
are

_ u

€) = ; (23)
_du

€ — 5 (24)

in which # = uE/bo, is the dimensionless displacement, & = ¢;E/g, the normalized strain, u the dis-
placement, and E the modulus of elasticity. It should be noted that the equation of motion and strain-
displacement relations holds irrespective of material behavior. In Eqgs. (2.3) and (2.4) €; represents total
mechanical strains given by

where the superscripts e and p are used to indicate elastic and plastic counterparts of the total strain, re-
spectively. For purely elastic deformations of the disk

gr = E: = 6'r — Va'g (26)
€ = E?) = 09 — VO, (27)

in which v is the Poisson ratio. A stress function formulation and analytical solution for annular disks are
given below. The displacement formulation and the solution are presented in Appendix A.
Defining the dimensionless stress function in terms of radial stress (Timoshenko and Goodier, 1970)

Y(7) = h7a, (2.8)
from which
Y
G, = — 2.9
7T (29)
Substituting Eq. (2.9) in Eq. (2.2) the circumferential stress is obtained as
1dy
S R
gy = Q°F +7z O (2.10)

The radial and circumferential stresses defined in this manner automatically satisfy the equation of motion,
given by Eq. (2.2). Elastic strains can be rewritten in terms of the stress function Y as

Y o, ldy

N st o
1dy Y

& =P +=-— —v|— 2.12

R A V[hr] @12)

Substituting the elastic strains from Egs. (2.11) and (2.12) in the compatibility relation
d
—(rép) — €&, =0 (2.13)

dr
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the following differential equation in terms of the stress function Y (7) is obtained.
&’y |1 K|dY 1
il 2= 4 |Y=f(F 2.14
d?ZJF[f h]del 72+rh1 S (2.14)
where a prime denotes differentiation with respect to radial coordinate 7, and
f(7) = —(3 +v)hQ*F (2.15)

Hence, the homogeneous equation corresponds to f(7) = 0. The boundary conditions for Y are to be
obtained from the boundary conditions for the stresses which are given as follows:

I Solid disks

3:(0) =069(0) and 4,(1)=0 (2.16)
IT Annular disks

6:(fo)) =0 and 4,(1)=0 (2.17)
III Annular disks with rigid inclusion

a9(Fo) —vo,(F)) =0 and a,(1)=0 (2.18)

where 7, is the inner radius of the disk. The last condition above is obtained by making use of the fact
that at the rigid inclusion-disk contact area the radial displacement vanishes. If & = (1 — nF)* and
W =—kn(l — n?)k_l are substituted in Eq. (2.14) one solution to the homogeneous equation is obtained
as

w(r) =7F(a,b,c,nr) (2.19)
where F(a, ,7,x) is the hypergeometric function given by (Abramowitz and Stegun, 1966)

af (e + DBB+1) 5 ale+ D(e+2)BB+1)(f+2) ,
T T e T y(r+ Dy +2)3! e (2:20

The series F(a, f3, 7, x) converges slowly for |x| < 1 provided that y — (¢ 4 ) > —1. Since the problem under
consideration is a realistic physical problem, these conditions are always satisfied and the series is always
convergent. The arguments a, b and ¢ of the hypergeometric function F in Eq. (2.19) have the following
meanings:

Flo, B,7,x) = 1+

k

1
1 _%_ 1 /2 _
a=1 3 2\/k +4(1 —kv)

1
b=1—§+E 2+ 41 — kv) (2.21)

c=3

The second linearly independent solution is obtained by assuming that the homogeneous solution is in the
form Y (7) = y| () - V(7). Substituting in the homogeneous equation gives

d*v 1w dy, | d¥
yIF‘F{yl —]+2 yl} =0 (2.22)

F ok dr [ dr
The solution is

V(F) = Cy + G\ (F) (2.23)
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where
a
L(r) = ©) 5d¢ (2.24)
7o éyl(i)
Therefore, the second solution for Y (7) is found to be
w(F) = n(F)L(7) (2.25)

For solid disks 7y = 0, the integral in Eq. (2.24) contains non-integrable singularity at the axis of the disk.
Hence, the solution presented herein is valid for annular disks.
The general solution for Y (7) is obtained as

Y(r) = Cin(F) + Cona(7) + R(7) (2.26)
in which R(7) is the particular solution in the form
R(7) = wi (N (7) + ua(F)32(7) (2.27)
with
N PN e
u (7)) = /m B dz and u(7) /m B d (2.28)

The Wronskian W;(7) is
dy dn _ A7)

Wr(i)ZJ’IE*J’zE*T (2.29)
Hence, the general solution becomes
Y(F) =n(7) [Cl + GL(F) + L(F)L(F) — 13(?)] (2.30)
in which
L(F) = / plara) (2.31a)
7o h(Z)

i (2)f h(&)
/ /[ o H@l(@z]dw (2310)

The analytical solution is completed by the application of the boundary conditions. For the annular disk
the result is

5(1)

Ii(1)

For the annular disk with rigid inclusion the integration constants are evaluated as
hFEo) {5(1) + (D[R (7) - £(1)] }

C = — (233)
h(7o) + 1, (1) (7o) [VM (Fo) — 7oy (7’0)]

C] =0 and C2 = —12(1) +

(2.32)

Vi (?0){ — RQh(Ro) + [I5(1) — Li(1)L(1)] {VJ’I (7o) — 7o)} (?0)”

C, = _
(7o) + 1 (131 (7o) [wa (o) = vt ()|

(2.34)
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in which the derivative y| is

d rab
%: F(a,b,c,nr) er "

An alternate analytical solution for this stress function formulation is given in Appendix B. Once the so-
lution is found in terms of Y, the stresses are obtained from

Fla+1,b+1,c+ 1,nF)

o.(r) = % {Cl +GL(F)+L(P)LF) — L (f)] (2.35)
2ln) = &7 *% % €+ Gl (R + L PR~ 5(E)] +7 {Czilfr' + %Iz(?) +11(7) % - %

(2.36)

where

dn, __h(r)
&7 i (7) (2.37a)
di, _ mi(r)f(F)
daF () (2.37b)
d; dnL
=5 I(7) (2.37¢)

Since the closed form solution cannot be found for a solid disk, its solution will be obtained by numerical
means. For this aim, Eq. (2.14) is put into the general form

d’y __dy
Letting ¢, = Y and ¢, = dY/dF, Eq. (2.38) is converted into a system of initial value problems

de, _

Fr o, (2.39)

d¢ }

T;:f(ra ¢17¢2) (240)
subject to the initial conditions

Y
#0 = Y(0) and ¢ = & (2.41)
dr |,

From Eq. (2.8) ¢" = 0, but ¢} is not known. To find out this unknown initial condition a Newton iteration
scheme can be set up by requiring that ¥(1) = 0.

First, the elastic limit angular velocity is calculated for a uniform thickness annular disk having an inner
radius of 7 = 0.1 using v = 1/3. The non-zero integration constant is found to be C, = 9.683623 x 1073
and the corresponding elastic limit angular velocity is calculated as 2 = 1.094351. The stresses and dis-
placement at this limit angular velocity are displayed in Fig. 1. As seen in this figure, for rotating uniform
thickness annular disks, the circumferential stress is the largest principal stress which reaches its maximum
value at the inner surface, 7 = 7. Variable thickness annular disk calculations are then performed by setting
7o = 0.1 and £ = 1 and using the elastic limit angular velocity of the uniform thickness disk, 2; = 1.094351.
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Fig. 1. Elastic stresses and displacement in rotating constant thickness annular disk of inner radius 7, = 0.1 at the elastic limit angular
velocity Q; = 1.094351.
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Fig. 2. Comparison of (a) elastic circumferential stresses (b) elastic radial stresses in rotating variable thickness annular disks of inner
radius 7y = 0.1 at the elastic limit angular velocity Q, = 1.094351.
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The results of these calculations are compared with those of uniform thickness disk in Fig. 2(a) and (b). Fig.
2(a) compares circumferential stresses of uniform and variable thickness disks by changing the geometric
parameter n. As seen in this figure, all curves have similar shape. At the elastic limit angular velocity the
largest circumferential stress occurs in uniform thickness disk and as the reduction of the disk thickness at
the edge decreases the stresses decrease as well. The smallest stress corresponds to the largest decrease in the
disk thickness. Fig. 2(b) compares radial stresses of uniform and variable thickness disks. Again, the largest
radial stress occurs in uniform thickness disk, the smallest corresponds to 80% decrease in disk thickness at
the edge of the disk. Variation of the elastic limit angular velocity with the geometric parameter n for £ = 1
is calculated and plotted in Fig. 3 for annular disks with inner radius 7, = 0.1, 0.2, 0.3 and 0.4. In each disk
n = 0 corresponds to uniform thickness disk. Elastic limit angular velocities increase as the reduction in the
disk thickness increases. The largest elastic limit angular velocities correspond to the annular disk with the
smallest inner radius. As the inner radius increases elastic limit angular velocities decrease.

Taking 7o = 0.1 and v = 1/3 the elastic limit angular velocity of a uniform thickness annular disk with
rigid inclusion is calculated. The integration constants are found to be C; =9.8 x 107! and G, =
—6.692874 x 1073 and the elastic limit angular velocity is calculated as Q; = 1.273185. The corresponding
stresses and displacement are shown in Fig. 4. In contrast to the annular disk, the radial stress is the largest
stress in this disk and its maximum value is at the rigid inclusion—annular disk interface. The radial and
circumferential stresses at Q; = 1.273185 are compared with those of linearly varying thickness disks of
different thickness reduction in Fig. 5(a) and (b). Both radial and circumferential stresses indicate simi-
lar behavior and the largest stresses are those of uniform thickness annular disk with rigid inclusion.
The effect of the reduction in disk thickness on elastic limit angular velocities is illustrated in Fig. 6 using
inner radius 7, as a parameter. As in annular disks, the limit angular velocity increases with increasing
thickness reduction for each disk. For annular disks with rigid inclusion, elastic limit angular velocities

1.55 r
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1.45

1.35

1.25

elastic limit angular velocity

—
o
(6]

1-05AAAAIAAAAIAAAAIAAAAIAAAAI
0 0.2 0.4 0.6 0.8 1

parameter n

Fig. 3. Variation of elastic limit angular velocity with the thickness reduction for rotating variable thickness annular disks.
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Fig. 4. Elastic stresses and displacement in rotating constant thickness annular disk with rigid inclusion having an inner radius 7, = 0.1
at the elastic limit angular velocity Q, = 1.273185.
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Fig. 5. Comparison of (a) elastic radial stresses (b) elastic circumferential stresses in rotating variable thickness annular disks with rigid
inclusion having an inner radius of 7, = 0.1 at the elastic limit angular velocity Q; = 1.273185.
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Fig. 6. Variation of elastic limit angular velocity with the thickness reduction for rotating variable thickness annular disks with rigid
inclusion.
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increase as 7y increases. This is as expected because if the disk were entirely rigid, the elastic limit angular
velocity would tend to infinity.

The numerical solution procedure for variable thickness solid disks, as described above, is verified by
comparison with the analytical solution. For this purpose, the elastic limit angular velocity of uniform
thickness disk is computed by setting v = 1/3 and n = 0. The elastic limit angular velocity is reached in five
main iterations to hit &,(0) = ,(0) = 1.0 and on the average 5 Newton iterations required in each to
determine dY /dr|._,. The elastic limit angular velocity is obtained as Q; = 1.549193. Gamer (1984) reports
this as Q; = 1.54919 by carrying out an analytical solution for a rotating constant thickness solid disk. The
limit angular velocity calculated in this work agrees with Gamer’s result in all the digits as reported. The
corresponding stresses and displacement are plotted in Fig. 7 showing well-known stress displacement
distributions of uniform thickness solid disks. The circumferential stress is the largest stress throughout the
disk and both stresses reach their maximum at the axis. It is also typical that if the Poisson ratio is taken as
1/3, the dimensionless circumferential stress becomes exactly equal to the dimensionless displacement at the
edge of the disk.

To find out the elastic deformation behavior of variable thickness rotating solid disks three different
profiles are chosen. These profiles are depicted in Fig. 8(a), (b) and (c). It should be noted again that the
base thickness of these disks are small compared to their diameters to justify the plane stress assumption.
The convex disk profile (D1) in Fig. 8(a) is obtained by choosing n = 0.96 and &k = 0.5. The disk profile (D2)
shown in Fig. 8(b) is linear and corresponds to the geometric parameters n = 0.8 and k£ = 1.0. Fig. 8(c)
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Fig. 8. Variable thickness disk profiles for (a) n =0.96 and £ = 0.5; (b) n = 0.8 and k = 1.0; (c) n = 0.4151965 and k = 3.0.
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(c) n = 0.4151965 and k = 3.0.
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Fig. 10. Variation of elastic limit angular velocity with the thickness reduction for rotating variable thickness solid disks.

shows a concave disk profile (D3) which is obtained by setting n = 0.4151965 and k& = 3.0. With these
values of the geometric parameters each of the disks has 80% thickness reduction at the edge. Elastic limit
angular velocities for these variable thickness solid disks are computed as Q; = 1.923286 for disk DI,
2.030323 for D2 and 2.060089 for D3. The corresponding stresses and displacements are plotted in Fig.
9(a), (b) and (c) for disks D1, D2 and D3, respectively. These figures reveal that, unlike uniform thickness
solid disk, the radial stress in these variable thickness disks is the largest stress reaching its maximum value
somewhere inside the disk not at the axis. The radial location of da,/d7 = 0 designated by 7y in Fig. 9,
moves away from the axis of the disk as the disk mass decreases. This behavior of variable thickness ro-
tating solid disks as discussed in (Eraslan and Orcan, 2002) is important because the plastic deformation
should start at a radial position corresponding to dg,/d7 = 0 inside the disk and will propagate in both
directions as the angular velocity is increased. Fig. 10 displays the variation of elastic limit angular velocity
for solid disks with thickness reduction using k as a parameter. As seen in Fig. 10, the limit angular velocity
increases with decreasing disk thickness at the edge as well as decreasing mass of the disk.

3. Inelastic solution and fully plastic limit angular velocities

In the case of plane stress (6, = 0), von Mises yield condition for inelastic deformations of the disk is
6, =1\/G>— G,:Gg + 0, (3.1)

assuming nonlinear strain hardening material behavior in the form of Swift’s hardening law

6, = (1+ Hexo) v (3.2)
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where H = noy/E represents normalized hardening parameter,  hardening parameter, égq normalized
equivalent plastic strain and m material parameter. Note that with this form of the yield stress-equiva-
lent strain relation, linear strain hardening can be obtained by setting m = 1. The inverse relation of Eq.
3.2) is

_ —m 1
Eeo = (ay - 1) - (3.3)
In terms of equivalent strain the plastic strains are defined as
€ 1
@ =20 { - 2] (3.4)
& = 0 60—1@ (3.5)
0 a-y 2
Combining Egs. (2.5), (3.3), (3.4) and (3.5) total strains are obtained as
el N U o
& = /6'),H Or =500 + [6: — vay] (3.6)
€ = o, H 9 =5 0r + [69 — va,] (3.7)

Substituting total strains in the compatibility relation, Eq. (2.13), one obtains

H(1+)6,+ 37 - 1))@ - )

I PR PG
2H3, 2HG, | dr Hé, | dr
P14+ (m—1)ay | (6r — 209) | 45.
- [ d a9, _ (3.8)

2HG? dr

The stresses are expressed in terms of the stress function Y(7) by making use of Egs. (2.9) and (2.19).
The first-order derivatives of 6, and &, contain second-order derivatives of Y. They are evaluated sepa-
rately as

ds, N N 1dY

dr 20, a 26, Ns + h di? ] (39)
day 1d’y

& Mty (310

where
da,
= (26,6 11
N = (26, — 7y) & (3.11a)
N, = G, — 26y (3.11b)
1 dh dY
N, =2 L dndY (3.11c)
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Substituting Egs. (3.9) and (3.10) in Eq. (3.8) and simplifying gives

[2H(1 + v)&v + 3N5} _ _ _ N5 I7N2N4 _ f‘N5 d&r
, — ) + NaF |l +—— | + ——[NaN; — Ny] —
2H3, (G0 = &:) + Na7 +H6'y + 4HG V2N = Mi] rv+2Hay dr
(3.12)
LT TN NN, &’y 0
h  hHG, 4HhG} | dP?
in which
Ny = (m—1)5" + 1 (3.13a)
Ns=ar—1 (3.13b)

If the radial, circumferential and yield stresses are substituted from Egs. (2.9), (2.10) and (3.1), respectively,
in Eq. (3.12), the result can be cast into the general form given by Eq. (2.38). The numerical solution is
obtained as described in the previous section.

A run is performed to compute the plastic limit angular velocity of a linearly hardening rotating uniform
thickness solid disk by taking H = 0.5, v =1/3, m = 1 and setting n = 0. Six iterations were performed to
reach the convergence yielding Q, = 2.117331. Gamer (1984) used Tresca’s yield condition, its associated
flow rule and assumed linear strain hardening material behavior to estimate the plastic limit angular ve-
locity of a rotating uniform thickness solid disk. He obtained a consistent closed form solution to his model
and calculated the plastic limit angular velocity as €, = 2.08043, by using the same hardening parameter
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Fig. 11. Comparison of inelastic stresses and displacements by analytical Tresca solution from (Gamer, 1984) for rotating constant
thickness solid disk. Dots represent analytical solution.
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Fig. 12. Comparison of inelastic stresses by the solution of Ma et al. (2001) for (a) rotating linearly varying thickness solid disk,
(b) linearly varying thickness annular disk of inner radius 7y = 0.01. Dots represent the results of Ma et al.

and Poisson’s ratio. Although a different yield condition is used in this work, the result obtained here is in
good agreement with that of Gamer. Furthermore, it is known that plastic limit angular velocities calcu-
lated by von Mises yield condition are slightly higher than those of Tresca (Rees, 1999). The stresses and
displacement corresponding to the fully plastic state are compared to Gamer’s analytical solution in Fig.
11. Although limit angular velocities are slightly different, a good agreement is obtained especially in radial
stress and displacement.

Before the results of variable thickness disks are given, another comparison is made with the literature.
Ma et al. (2001) computed the inelastic deformation of linearly decreasing thickness annular and solid
disks, each of which corresponding to 33% thickness reduction at the edge. These disks can be studied in
this work by taking n =2/3 and k = 1.0. In addition, we set H = 0.5, v=1/3 and m = 3 to simulate
nonlinear hardening material behavior. Fig. 12(a) compares the results of rotating solid disk of linearly
varying thickness. The agreement is very poor. This is because Ma et al. computed constant stresses in the
central portion of the disk. Substituting 4(7) = (1 — 2/37) and &, = 6y = C, where C is a constant, in the
equation of motion, Eq. (2.2), reveals

ooz

C=5"(3-27)

This result is contradictory to 6, = 6y = constant. Thus, their estimations fail to satisfy the equation of
motion in the regions of constant radial and circumferential stresses. The results of the stresses in rotating
annular disk of inner radius 7y = 0.01 are compared with those of Ma et al. in Fig. 12(b). Again, the
agreement is very poor.

Using the parameters H = 0.5, v =1/3 and m = 3 the stresses and displacement in rotating solid disks
DI, D2 and D3 in the fully plastic state are calculated and the results are presented in Fig. 13(a), (b) and (c),
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Fig. 14. Variation of plastic limit angular velocity in variable thickness solid disks with (a) linear hardening (m = 1), (b) nonlinear
hardening (m = 2) and (c) nonlinear hardening (m = 3).
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Fig. 15. Effect of (a) the hardening parameter H, (b) the material parameter m on the calculated plastic limit angular velocities.

respectively. The plastic limit angular velocities for these disks are obtained as Q, = 2.274888 for DI,
2.341080 for D2, and 2.346266 for disk D3. As seen in Fig. 13, the radial stress is the largest stress in these
disks and the radial position of da,/d7 = 0 moves away from the axis as the disk mass decreases.

Variation of plastic limit angular velocities with disk thickness reduction is displayed in Fig. 14(a), (b)
and (c) using k as a parameter for different material parameters m. Fig. 14(a) is obtained for m = 1 which
corresponds to linear hardening material behavior. Fig. 14(b) and (c) correspond to m =2 and m = 3,
respectively, simulating nonlinear hardening material.

The effect of hardening parameter H on the plastic limit angular velocities is illustrated in Fig. 15(a) for
linear hardening (m = 1). Plastic limit angular velocities increase as H is increased. Finally, Fig. 15(b) shows
Q vs. nusing H = 0.5 for different material parameters m. The largest limit angular velocities are obtained
for the linear hardening material and it is observed that as m increases limit angular velocities decrease.

4. Concluding remarks

Elastic stresses, displacements and limit angular velocities have been calculated for rotating variable
thickness annular disks, annular disks with rigid inclusion and solid disks. Variable thickness rotating
annular disks and annular disks with rigid inclusion yielded stress profiles similar to those of constant
thickness ones with magnitudes smaller than the corresponding constant thickness disks at the same an-
gular velocity. In contrast, the deformation behavior of variable thickness rotating solid disks differed
significantly from constant thickness disks. The radial stress was found to be the largest principal stress and
reached a maximum at a radial position inside the disk, not at the axis as in constant thickness solid disk.
The location of the maximum radial stress moved away from the axis as the disk mass decreased for the
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same thickness reduction at the edge. Nevertheless, elastic limit angular velocities were found to increase
with increasing disk thickness reduction and with decreasing disk mass for all disks.

Inelastic deformations and plastic limit angular velocities have been computed using von Mises yield
criterion and its flow rule for linear and nonlinear hardening rotating solid and annular disks. A com-
parison with Tresca’s yield condition showed that the plastic limit angular velocity obtained by von Mises
yield condition is slightly higher than Tresca for the linear hardening material. Plastic limit angular ve-
locities have been found to be affected by the shape of the disk profile significantly. The reduction in the
disk thickness increased plastic limit angular velocities. Lower plastic limit angular velocities have been
obtained for nonlinearly hardening rotating solid disks.

Appendix A. Displacement formulation and solution

Substituting the elastic strains from Egs. (2.6) and (2.7) in Eqgs. (2.3) and (2.4) and solving for the

stresses, the stress-displacement relations are obtained as
o vu(r) +Fu(F)

(F) = A.l

5 =" (A1)

u(r) + v (7)

ao(r) = I (A.2)

Substituting these stresses in the equation of motion, Eq. (2.2), and simplifying the following differential
equation for the dimensionless radial displacement # is obtained.

du |1 n|du 1 | ~

@%?*7]5‘[5‘%]“*@ (A3
in which

gr) =—(1-V)QF (A4)

Hence the homogeneous equation is obtained by setting g = 0. One solution to the homogeneous equation
is found to be

() =rF(a,b,c,nr) (A.5)
where F(o, ,7,x) is the hypergeometric function defined by Eq. (2.20) and a, b, ¢ are
ko1
_ %) _
a_1+2 3 K+ 4(1 — kv)
1
p—1+5 0L eran T (A-6)
22
c=3

By using the method of reduction of order the second linearly independent solution is found to be

n(r) =n(F)h(7) (A7)
where
ne = [ =2 (A.8)

n Eh(E(E)’
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Note that as in the stress function solution, this integral contains non-integrable singularity at 7y = 0,
accordingly, it is valid for annular disks. The general solution for the radial displacement can be written as

u(r) = Cin(r) + Cona(7) + R(7) (A9)

The particular integral solution R(7) is obtained by the method of variation of parameters. The result is

R(7) = 0 (7) [H (L) ~ 1(7)] (A.10)
where

b = [ @) All)

we = [ [ o) [m]dm (A12)

Appendix B. Alternate solution for the stress function formulation

To solve the linear differential equation, Eq. (2.14), we first substitute 4= (1 —n7)* and ' =
—kn(1 —n7)*" in this equation, then introduce a new variable z = 1 — n7 and the transformation Y (7) =
(1 —2)G(z)/n to obtain

z(1 —Z)(;Z—(j —k+3- k)z](ii—f +hik(l—v)G= —% (3 +v)Q°(1 — 2)Z] (B.1)

Eq. (B.1) is a hypergeometric differential equation with the homogeneous solution (Abramowitz and Ste-
gun, 1966)

G(z) = C181(2) + C22(2) (B.2)
where C; and C, are arbitrary integration constants and
g1(z) =F(a,b,¢,2)

oiz) =2 Fla—c+1,b—c+1,2—¢,2)

ko1
_ o 2 _
a=1 573 k* 4+ 4(1 — kv) (B.3)

ko1
b=1—=+-\/k2+4(1 -k

2—|—2 +4( V)
c=—k

The function F(a, B, y,x) in the above equation is the hypergeometric function described by Eq. (2.20). The
general solution for the stress function Y (7) takes the form

Y(F) = f[ClF(a,b,c,l —nF) + C(1 —nf) *Fla—c+1,b—c+1,2—¢,1 — nf)} +R(7) (B.4)

where R(7) is the particular solution which can be obtained using variation of parameters. Since the
function F(a,b,c,1 — nr) is not finite at the axis of the disk, this solution is valid for annular disks.
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Appendix C. Note on the evaluation of hypergeometric functions

The hypergeometric function defined by the series given by Eq. (2.20) converges slowly. At first sight, it
may be thought that summing up several terms of the series would be sufficient to get the correct numerical
value of the function. But this may not be true. As |x| — 1 the rate of convergence is extremely slow. For
example, to get the true value 13.3244385 of the hypergeometric function F(0.9,0.9,1.3,0.99) 1892 terms
should be added. Care must be exercised in calculating hypergeometric functions especially when |x| ap-
proaches to 1. To be able to add such a large number of terms, each term should be factorized. For ex-
ample, the fourth term 7y in the series is obtained by the following calculation sequence:

o a+ 1 o+2 ; B ; B+1 ; p+2

Hh =—; HhHh = —— = = -
1 y? 2 '))“1‘17 3 y+27 1 17 2 2 ) 3 3

(C.1)

Then

_ oot D@ +2)B(F+1D)(B+2) 5 _ Lo
e 7+ D +2)3! C=htt bbb (C2)

This calculation procedure avoids evaluation of factorials of large numbers which is practically not pos-
sible. Furthermore, the following linear transformation (Abramowitz and Stegun, 1966) is useful in in-
creasing the rate of convergence of the series:

F(OC,B,“/,X) = (1 _x)v*ziﬁF(’y — oY — /3»“/7)‘) (C3)
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