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Abstract

Elastic and plastic limit angular velocities are calculated for rotating disks of variable thickness in power function

form. Analytical solution is obtained and used to calculate elastic limit angular velocities of variable thickness rotating

annular disks and annular disks with rigid inclusion. An efficient numerical solution procedure is designed and used to

obtain the elastic limit angular velocities of variable thickness rotating solid disks. Von Mises yield criterion and its flow

rule is used to estimate plastic limit angular velocities. Both linear and nonlinear hardening material behaviors are

treated numerically. The results are verified by comparing with those of uniform thickness rotating solid disks available

in the literature. Elastic and plastic limit angular velocities are found to increase with the reduction of the disk thickness

at the edge as well as the reduction in the disk mass due to the shape of the profile. � 2002 Elsevier Science Ltd. All

rights reserved.
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1. Introduction

Estimation of elastic and especially plastic limit angular velocities in the design of disks rotating at high
speeds is an important subject due to a large number of applications in mechanical engineering. For this
reason, the theoretical investigation of stresses and displacement in such structures has been receiving
considerable attention and the topic was discussed in many standard textbooks (Calladine, 1969; Timo-
shenko and Goodier, 1970; Rees, 1990). The majority of the work in the area considers constant thickness
rotating solid or annular disks and uses Tresca’s yield condition and flow rule. Relatively fewer articles exist
in the literature employing von Mises yield criterion and its flow rule mainly because of the nonlinearities
inherent in this criterion. Among the numerous articles reporting the results of research conducted on the
subject, the most recent ones relevant to this investigation are reviewed below.

You et al. (1997, 1999) proposed a perturbation method and a power series method of solution for
estimating elastoplastic deformations of rotating uniform thickness disks. They employed von Mises yield
condition combined with a polynomial yield stress-equivalent strain relation, which describes nonlinear
hardening material behavior. Elastic–plastic stresses and displacement in a uniform thickness disk have
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been computed. The validity of the perturbation solution technique to handle the nonlinearity associated
with von Mises yield condition and assumed polynomial stress–strain relationship has been demonstrated
by comparison with finite element solution and analytical solution which uses Tresca’s yield condition. An
extension of this work was conducted by You et al. (2000) that combines this model with a Runge–Kutta
numerical solution procedure to compute elastic–plastic stresses in rotating disks of variable thickness and
density. The results reported by them concentrated on variable thickness and variable density annular disks
but the results of variable thickness solid disks were not presented.

Tresca’s yield condition and its associated flow rule was compared with von Mises criterion and flow rule
in estimating elastic–plastic and residual stresses of rotating constant thickness solid and annular disks by
Rees (1999). It is shown that for uniform thickness disks von Mises solution simplifies to a form which is
appropriate for Runge–Kutta solution, by the use of standard elliptical substitutions. Tresca’s yield con-
dition has been found to predict slightly lower limit angular velocities than that of von Mises.

The stresses and deformations of rotating constant and linearly varying thickness solid and annular disks
were studied by Ma et al. (2001). They used a unified yield criterion such that one of Tresca, von Mises or
Yu criterion could be obtained by a suitable adjustment of the weighting coefficient. Two of their results for
rotating solid and annular disks with a linear disk profile in the form hðrÞ ¼ 3� 2r are compared with those
obtained in this work in the following sections. However, the constant radial and circumferential stresses
obtained by Ma et al. in the central portion of the disks fail to satisfy the equation of motion.

The stresses in the rotating hyperbolic disk with rigid inclusion were studied analytically by G€uuven
(1998) using Tresca’s yield condition, its flow rule and linear hardening. The stresses in such variable
thickness disks have been found to be affected by the thickness parameter that defines the shape of the disk
profile.

In a recent work, Eraslan and Orcan (2002) studied elastic–plastic deformations of rotating solid disks of
exponentially varying thickness. An analytical solution has been obtained using Tresca’s yield condition
and its associated flow rule for linearly strain hardening. Their analysis indicated that, unlike constant
thickness disks, for steep disk profiles the radial stress at the central core exceeds circumferential stress.
Accordingly, the plastic zone develops away from the axis of the disk and propagates in all radial direc-
tions.

There appears only a few number of work in the literature investigating inelastic deformations of
variable thickness rotating disks using von Mises yield condition combined with nonlinear hardening. This
work attempts to perform a comprehensive study on inelastic as well as elastic deformations of variable
thickness annular and solid disks rotating at high speeds.

2. Elastic solution and elastic limit angular velocities

The disk is symmetric with respect to the mid-plane and its thickness varies according to

�hhð�rrÞ ¼ ð1� n�rrÞk ð2:1Þ
in which �hh ¼ h=h0 is the dimensionless thickness, h0 thickness at the axis of the disk, �rr ¼ r=b dimensionless
radial coordinate, b radius of the disk, n and k are dimensionless thickness parameters. The thickness of the
disk is assumed to be sufficiently small compared to its diameter so that plane stress assumption is justified.
With this form of the disk profile function, uniform thickness disk can be obtained by setting either n ¼ 0 or
k ¼ 0 and a linearly decreasing thickness can be obtained by simply setting k ¼ 1. Furthermore, if k < 1 the
profile is convex and it is concave if k > 1.

A state of plane stress (rz ¼ 0) and infinitesimal deformations are presumed. Using the formal dimen-
sionless variables: dimensionless stress �rrij ¼ rij=r0 and dimensionless angular velocity X ¼ xb

ffiffiffiffiffiffiffiffiffiffi
q=r0

p
, the

equation of motion in dimensionless form reads
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d

d�rr
ð�hh�rr�rrrÞ � �hh�rrh þ �hhX2�rr2 ¼ 0 ð2:2Þ

where r0 stands for the yield limit, x constant angular velocity and q mass density. The geometric relations
are

���h ¼
�uu
�rr

ð2:3Þ

���r ¼
d�uu
d�rr

ð2:4Þ

in which �uu ¼ uE=br0 is the dimensionless displacement, ���ij ¼ �ijE=r0 the normalized strain, u the dis-
placement, and E the modulus of elasticity. It should be noted that the equation of motion and strain-
displacement relations holds irrespective of material behavior. In Eqs. (2.3) and (2.4) ���ij represents total
mechanical strains given by

���ij ¼ ���eij þ ���pij ð2:5Þ

where the superscripts e and p are used to indicate elastic and plastic counterparts of the total strain, re-
spectively. For purely elastic deformations of the disk

���r ¼ ���er ¼ �rrr � m�rrh ð2:6Þ

���h ¼ ���eh ¼ �rrh � m�rrr ð2:7Þ

in which m is the Poisson ratio. A stress function formulation and analytical solution for annular disks are
given below. The displacement formulation and the solution are presented in Appendix A.

Defining the dimensionless stress function in terms of radial stress (Timoshenko and Goodier, 1970)

Y ð�rrÞ ¼ �hh�rr�rrr ð2:8Þ

from which

�rrr ¼
Y
�hh�rr

ð2:9Þ

Substituting Eq. (2.9) in Eq. (2.2) the circumferential stress is obtained as

�rrh ¼ X2�rr2 þ 1
�hh
dY
d�rr

ð2:10Þ

The radial and circumferential stresses defined in this manner automatically satisfy the equation of motion,
given by Eq. (2.2). Elastic strains can be rewritten in terms of the stress function Y as

���r ¼
Y
�hh�rr

� m X2�rr2
�

þ 1
�hh
dY
d�rr

�
ð2:11Þ

���h ¼ X2�rr2 þ 1
�hh
dY
d�rr

� m
Y
�hh�rr

� �
ð2:12Þ

Substituting the elastic strains from Eqs. (2.11) and (2.12) in the compatibility relation

d

d�rr
ð�rr���hÞ � ���r ¼ 0 ð2:13Þ
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the following differential equation in terms of the stress function Y ð�rrÞ is obtained.

d2Y
d�rr2

þ 1

�rr

"
�
�hh0

�hh

#
dY
d�rr

þ
"
� 1

�rr2
þ m�hh0

�rr�hh

#
Y ¼ f ð�rrÞ ð2:14Þ

where a prime denotes differentiation with respect to radial coordinate �rr, and

f ð�rrÞ ¼ �ð3þ mÞ�hhX2�rr ð2:15Þ
Hence, the homogeneous equation corresponds to f ð�rrÞ ¼ 0. The boundary conditions for Y are to be
obtained from the boundary conditions for the stresses which are given as follows:

I Solid disks

�rrrð0Þ ¼ �rrhð0Þ and �rrrð1Þ ¼ 0 ð2:16Þ
II Annular disks

�rrrð�rr0Þ ¼ 0 and �rrrð1Þ ¼ 0 ð2:17Þ
III Annular disks with rigid inclusion

�rrhð�rr0Þ � m�rrrð�rr0Þ ¼ 0 and �rrrð1Þ ¼ 0 ð2:18Þ

where �rr0 is the inner radius of the disk. The last condition above is obtained by making use of the fact
that at the rigid inclusion–disk contact area the radial displacement vanishes. If �hh ¼ ð1� n�rrÞk and
�hh0 ¼ �knð1� n�rrÞk�1

are substituted in Eq. (2.14) one solution to the homogeneous equation is obtained
as

y1ð�rrÞ ¼ �rrFða; b; c; n�rrÞ ð2:19Þ
where Fða; b; c; xÞ is the hypergeometric function given by (Abramowitz and Stegun, 1966)

Fða; b; c; xÞ ¼ 1þ ab
c1!

xþ aða þ 1Þbðb þ 1Þ
cðc þ 1Þ2! x2 þ aða þ 1Þða þ 2Þbðb þ 1Þðb þ 2Þ

cðc þ 1Þðc þ 2Þ3! x3 þ � � � ð2:20Þ

The series Fða; b; c; xÞ converges slowly for jxj < 1 provided that c � ða þ bÞ > �1. Since the problem under
consideration is a realistic physical problem, these conditions are always satisfied and the series is always
convergent. The arguments a, b and c of the hypergeometric function F in Eq. (2.19) have the following
meanings:

a ¼ 1� k
2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4ð1� kmÞ

p
b ¼ 1� k

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4ð1� kmÞ

p
c ¼ 3

ð2:21Þ

The second linearly independent solution is obtained by assuming that the homogeneous solution is in the
form Y ð�rrÞ ¼ y1ð�rrÞ � V ð�rrÞ. Substituting in the homogeneous equation gives

y1
d2V
d�rr2

þ y1
1

�rr

"(
�
�hh0

�hh

#
þ 2

dy1
d�rr

)
dV
d�rr

¼ 0 ð2:22Þ

The solution is

V ð�rrÞ ¼ C1 þ C2I1ð�rrÞ ð2:23Þ
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where

I1ð�rrÞ ¼
Z �rr

�rr0

�hhðnÞ
ny1ðnÞ2

dn ð2:24Þ

Therefore, the second solution for Y ð�rrÞ is found to be

y2ð�rrÞ ¼ y1ð�rrÞI1ð�rrÞ ð2:25Þ
For solid disks �rr0 ¼ 0, the integral in Eq. (2.24) contains non-integrable singularity at the axis of the disk.
Hence, the solution presented herein is valid for annular disks.

The general solution for Y ð�rrÞ is obtained as

Y ð�rrÞ ¼ C1y1ð�rrÞ þ C2y2ð�rrÞ þ Rð�rrÞ ð2:26Þ
in which Rð�rrÞ is the particular solution in the form

Rð�rrÞ ¼ u1ð�rrÞy1ð�rrÞ þ u2ð�rrÞy2ð�rrÞ ð2:27Þ
with

u1ð�rrÞ ¼ �
Z �rr

�rr0

y2ðzÞf ðzÞ
WrðzÞ

dz and u2ð�rrÞ ¼
Z �rr

�rr0

y1ðzÞf ðzÞ
WrðzÞ

dz ð2:28Þ

The Wronskian Wrð�rrÞ is

Wrð�rrÞ ¼ y1
dy2
d�rr

� y2
dy1
d�rr

¼
�hhð�rrÞ
�rr

ð2:29Þ

Hence, the general solution becomes

Y ð�rrÞ ¼ y1ð�rrÞ C1

h
þ C2I1ð�rrÞ þ I1ð�rrÞI2ð�rrÞ � I3ð�rrÞ

i
ð2:30Þ

in which

I2ð�rrÞ ¼
Z �rr

�rr0

zy1ðzÞf ðzÞ
�hhðzÞ

dz ð2:31aÞ

I3ð�rrÞ ¼
Z �rr

�rr0

Z z

�rr0

zy1ðzÞf ðzÞ
�hhðzÞ

" #
�hhðnÞ

ny1ðnÞ2

" #
dndz ð2:31bÞ

The analytical solution is completed by the application of the boundary conditions. For the annular disk
the result is

C1 ¼ 0 and C2 ¼ �I2ð1Þ þ
I3ð1Þ
I1ð1Þ

ð2:32Þ

For the annular disk with rigid inclusion the integration constants are evaluated as

C1 ¼
�hhð�rr0Þ I3ð1Þ þ I1ð1Þ �rr30X

2y1ð�rr0Þ � I2ð1Þ
h in o

�hhð�rr0Þ þ I1ð1Þy1ð�rr0Þ my1ð�rr0Þ � �rr0y01ð�rr0Þ
h i ð2:33Þ

C2 ¼
y1ð�rr0Þ � �rr30X

2�hhð�rr0Þ þ ½I3ð1Þ � I1ð1ÞI2ð1Þ
 my1ð�rr0Þ � �rr0y01ð�rr0Þ
h in o

�hhð�rr0Þ þ I1ð1Þy1ð�rr0Þ my1ð�rr0Þ � �rr0y01ð�rr0Þ
h i ð2:34Þ
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in which the derivative y01 is

dy1
d�rr

¼ Fða; b; c; n�rrÞ þ �rrabn
c

Fðaþ 1; bþ 1; cþ 1; n�rrÞ

An alternate analytical solution for this stress function formulation is given in Appendix B. Once the so-
lution is found in terms of Y, the stresses are obtained from

�rrrð�rrÞ ¼
y1
�hh�rr

C1

h
þ C2I1ð�rrÞ þ I1ð�rrÞI2ð�rrÞ � I3ð�rrÞ

i
ð2:35Þ

�rrhð�rrÞ ¼ X2�rr2 þ 1
�hh
dy1
d�rr

C1

h
þ C2I1ð�rrÞ þ I1ð�rrÞI2ð�rrÞ � I3ð�rrÞ

i
þ y1

�hh
C2

dI1
d�rr

�
þ dI1

d�rr
I2ð�rrÞ þ I1ð�rrÞ

dI2
d�rr

� dI3
d�rr

�
ð2:36Þ

where

dI1
d�rr

¼
�hhð�rrÞ

�rry1ð�rrÞ2
ð2:37aÞ

dI2
d�rr

¼ �rry1ð�rrÞf ð�rrÞ
�hhð�rrÞ

ð2:37bÞ

dI3
d�rr

¼ dI2
d�rr

� I1ð�rrÞ ð2:37cÞ

Since the closed form solution cannot be found for a solid disk, its solution will be obtained by numerical
means. For this aim, Eq. (2.14) is put into the general form

d2Y
d�rr2

¼ f �rr; Y ;
dY
d�rr

� �
ð2:38Þ

Letting /1 ¼ Y and /2 ¼ dY =d�rr, Eq. (2.38) is converted into a system of initial value problems

d/1

d�rr
¼ /2 ð2:39Þ

d/2

d�rr
¼ f ð�rr;/1;/2Þ ð2:40Þ

subject to the initial conditions

/0
1 ¼ Y ð0Þ and /0

2 ¼
dY
d�rr

����
�rr¼0

ð2:41Þ

From Eq. (2.8) /0
1 ¼ 0, but /0

2 is not known. To find out this unknown initial condition a Newton iteration
scheme can be set up by requiring that Y ð1Þ ¼ 0.

First, the elastic limit angular velocity is calculated for a uniform thickness annular disk having an inner
radius of �rr0 ¼ 0:1 using m ¼ 1=3. The non-zero integration constant is found to be C2 ¼ 9:683623� 10�3

and the corresponding elastic limit angular velocity is calculated as X1 ¼ 1:094351. The stresses and dis-
placement at this limit angular velocity are displayed in Fig. 1. As seen in this figure, for rotating uniform
thickness annular disks, the circumferential stress is the largest principal stress which reaches its maximum
value at the inner surface, �rr ¼ �rr0. Variable thickness annular disk calculations are then performed by setting
�rr0 ¼ 0:1 and k ¼ 1 and using the elastic limit angular velocity of the uniform thickness disk, X1 ¼ 1:094351.
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Fig. 1. Elastic stresses and displacement in rotating constant thickness annular disk of inner radius �rr0 ¼ 0:1 at the elastic limit angular

velocity X1 ¼ 1:094351.

Fig. 2. Comparison of (a) elastic circumferential stresses (b) elastic radial stresses in rotating variable thickness annular disks of inner

radius �rr0 ¼ 0:1 at the elastic limit angular velocity X1 ¼ 1:094351.

A.N. Eraslan, H. Argeso / International Journal of Solids and Structures 39 (2002) 3109–3130 3115



The results of these calculations are compared with those of uniform thickness disk in Fig. 2(a) and (b). Fig.
2(a) compares circumferential stresses of uniform and variable thickness disks by changing the geometric
parameter n. As seen in this figure, all curves have similar shape. At the elastic limit angular velocity the
largest circumferential stress occurs in uniform thickness disk and as the reduction of the disk thickness at
the edge decreases the stresses decrease as well. The smallest stress corresponds to the largest decrease in the
disk thickness. Fig. 2(b) compares radial stresses of uniform and variable thickness disks. Again, the largest
radial stress occurs in uniform thickness disk, the smallest corresponds to 80% decrease in disk thickness at
the edge of the disk. Variation of the elastic limit angular velocity with the geometric parameter n for k ¼ 1
is calculated and plotted in Fig. 3 for annular disks with inner radius �rr0 ¼ 0:1, 0.2, 0.3 and 0.4. In each disk
n ¼ 0 corresponds to uniform thickness disk. Elastic limit angular velocities increase as the reduction in the
disk thickness increases. The largest elastic limit angular velocities correspond to the annular disk with the
smallest inner radius. As the inner radius increases elastic limit angular velocities decrease.

Taking �rr0 ¼ 0:1 and m ¼ 1=3 the elastic limit angular velocity of a uniform thickness annular disk with
rigid inclusion is calculated. The integration constants are found to be C1 ¼ 9:8� 10�1 and C2 ¼
�6:692874� 10�3 and the elastic limit angular velocity is calculated as X1 ¼ 1:273185. The corresponding
stresses and displacement are shown in Fig. 4. In contrast to the annular disk, the radial stress is the largest
stress in this disk and its maximum value is at the rigid inclusion–annular disk interface. The radial and
circumferential stresses at X1 ¼ 1:273185 are compared with those of linearly varying thickness disks of
different thickness reduction in Fig. 5(a) and (b). Both radial and circumferential stresses indicate simi-
lar behavior and the largest stresses are those of uniform thickness annular disk with rigid inclusion.
The effect of the reduction in disk thickness on elastic limit angular velocities is illustrated in Fig. 6 using
inner radius �rr0 as a parameter. As in annular disks, the limit angular velocity increases with increasing
thickness reduction for each disk. For annular disks with rigid inclusion, elastic limit angular velocities

Fig. 3. Variation of elastic limit angular velocity with the thickness reduction for rotating variable thickness annular disks.
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Fig. 4. Elastic stresses and displacement in rotating constant thickness annular disk with rigid inclusion having an inner radius �rr0 ¼ 0:1
at the elastic limit angular velocity X1 ¼ 1:273185.

Fig. 5. Comparison of (a) elastic radial stresses (b) elastic circumferential stresses in rotating variable thickness annular disks with rigid

inclusion having an inner radius of �rr0 ¼ 0:1 at the elastic limit angular velocity X1 ¼ 1:273185.
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Fig. 6. Variation of elastic limit angular velocity with the thickness reduction for rotating variable thickness annular disks with rigid

inclusion.

Fig. 7. Elastic stresses and displacement in rotating constant thickness solid disk at the elastic limit angular velocity X1 ¼ 1:549193.
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increase as �rr0 increases. This is as expected because if the disk were entirely rigid, the elastic limit angular
velocity would tend to infinity.

The numerical solution procedure for variable thickness solid disks, as described above, is verified by
comparison with the analytical solution. For this purpose, the elastic limit angular velocity of uniform
thickness disk is computed by setting m ¼ 1=3 and n ¼ 0. The elastic limit angular velocity is reached in five
main iterations to hit �rrrð0Þ ¼ �rrhð0Þ ¼ 1:0 and on the average 5 Newton iterations required in each to
determine dY =d�rrj�rr¼0. The elastic limit angular velocity is obtained as X1 ¼ 1:549193. Gamer (1984) reports
this as X1 ¼ 1:54919 by carrying out an analytical solution for a rotating constant thickness solid disk. The
limit angular velocity calculated in this work agrees with Gamer’s result in all the digits as reported. The
corresponding stresses and displacement are plotted in Fig. 7 showing well-known stress displacement
distributions of uniform thickness solid disks. The circumferential stress is the largest stress throughout the
disk and both stresses reach their maximum at the axis. It is also typical that if the Poisson ratio is taken as
1=3, the dimensionless circumferential stress becomes exactly equal to the dimensionless displacement at the
edge of the disk.

To find out the elastic deformation behavior of variable thickness rotating solid disks three different
profiles are chosen. These profiles are depicted in Fig. 8(a), (b) and (c). It should be noted again that the
base thickness of these disks are small compared to their diameters to justify the plane stress assumption.
The convex disk profile (D1) in Fig. 8(a) is obtained by choosing n ¼ 0:96 and k ¼ 0:5. The disk profile (D2)
shown in Fig. 8(b) is linear and corresponds to the geometric parameters n ¼ 0:8 and k ¼ 1:0. Fig. 8(c)

Fig. 8. Variable thickness disk profiles for (a) n ¼ 0:96 and k ¼ 0:5; (b) n ¼ 0:8 and k ¼ 1:0; (c) n ¼ 0:4151965 and k ¼ 3:0.

A.N. Eraslan, H. Argeso / International Journal of Solids and Structures 39 (2002) 3109–3130 3119



Fig. 9. Elastic stresses and deformations of variable thickness rotating solid disks for (a) n ¼ 0:96 and k ¼ 0:5; (b) n ¼ 0:8 and k ¼ 1:0;
(c) n ¼ 0:4151965 and k ¼ 3:0.

3120 A.N. Eraslan, H. Argeso / International Journal of Solids and Structures 39 (2002) 3109–3130



shows a concave disk profile (D3) which is obtained by setting n ¼ 0:4151965 and k ¼ 3:0. With these
values of the geometric parameters each of the disks has 80% thickness reduction at the edge. Elastic limit
angular velocities for these variable thickness solid disks are computed as X1 ¼ 1:923286 for disk D1,
2.030323 for D2 and 2.060089 for D3. The corresponding stresses and displacements are plotted in Fig.
9(a), (b) and (c) for disks D1, D2 and D3, respectively. These figures reveal that, unlike uniform thickness
solid disk, the radial stress in these variable thickness disks is the largest stress reaching its maximum value
somewhere inside the disk not at the axis. The radial location of d�rrr=d�rr ¼ 0 designated by �rrM in Fig. 9,
moves away from the axis of the disk as the disk mass decreases. This behavior of variable thickness ro-
tating solid disks as discussed in (Eraslan and Orcan, 2002) is important because the plastic deformation
should start at a radial position corresponding to d�rrr=d�rr ¼ 0 inside the disk and will propagate in both
directions as the angular velocity is increased. Fig. 10 displays the variation of elastic limit angular velocity
for solid disks with thickness reduction using k as a parameter. As seen in Fig. 10, the limit angular velocity
increases with decreasing disk thickness at the edge as well as decreasing mass of the disk.

3. Inelastic solution and fully plastic limit angular velocities

In the case of plane stress (�rrz ¼ 0Þ, von Mises yield condition for inelastic deformations of the disk is

�rry ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�rr2
r � �rrr�rrh þ �rr2

h

q
ð3:1Þ

assuming nonlinear strain hardening material behavior in the form of Swift’s hardening law

�rry ¼ 1
�

þ H���EQ

�1=m
ð3:2Þ

Fig. 10. Variation of elastic limit angular velocity with the thickness reduction for rotating variable thickness solid disks.

A.N. Eraslan, H. Argeso / International Journal of Solids and Structures 39 (2002) 3109–3130 3121



where H ¼ gr0=E represents normalized hardening parameter, g hardening parameter, ���EQ normalized
equivalent plastic strain and m material parameter. Note that with this form of the yield stress-equiva-
lent strain relation, linear strain hardening can be obtained by setting m ¼ 1. The inverse relation of Eq.
(3.2) is

���EQ ¼ �rrm
y

�
� 1

� 1

H
ð3:3Þ

In terms of equivalent strain the plastic strains are defined as

���pr ¼
���EQ
�rry

�rrr

�
� 1

2
�rrh

�
ð3:4Þ

���ph ¼ ���EQ
�rry

�rrh

�
� 1

2
�rrr

�
ð3:5Þ

Combining Eqs. (2.5), (3.3), (3.4) and (3.5) total strains are obtained as

���r ¼
�rrm
y � 1

�rryH
�rrr

�
� 1

2
�rrh

�
þ ½�rrr � m�rrh
 ð3:6Þ

���h ¼
�rrm
y � 1

�rryH
�rrh

�
� 1

2
�rrr

�
þ ½�rrh � m�rrr
 ð3:7Þ

Substituting total strains in the compatibility relation, Eq. (2.13), one obtains

2Hð1þ mÞ�rry þ 3ð�rrm
y � 1Þ

h i
ð�rrh � �rrrÞ

2H �rry
� �rrm

"
þ
�rrð�rrm

y � 1Þ
2H �rry

#
d�rrr

d�rr
þ �rr

"
þ
�rrð�rrm

y � 1Þ
H �rry

#
d�rrh

d�rr

�
�rr 1þ ðm� 1Þ�rrm

y

h i
ð�rrr � 2�rrhÞ

2H �rr2
y

8<
:

9=
; d�rry

d�rr
¼ 0 ð3:8Þ

The stresses are expressed in terms of the stress function Y ð�rrÞ by making use of Eqs. (2.9) and (2.19).
The first-order derivatives of �rrh and �rry contain second-order derivatives of Y. They are evaluated sepa-
rately as

d�rry

d�rr
¼ N1

2�rry
� N2

2�rry
N3

"
þ 1
�hh
d2Y
d�rr2

#
ð3:9Þ

d�rrh

d�rr
¼ N3 þ

1
�hh
d2Y
d�rr2

ð3:10Þ

where

N1 ¼ ð2�rrr � �rrhÞ
d�rrr

d�rr
ð3:11aÞ

N2 ¼ �rrr � 2�rrh ð3:11bÞ

N3 ¼ 2X2�rr � 1
�hh2

d�hh
d�rr

dY
d�rr

ð3:11cÞ
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Substituting Eqs. (3.9) and (3.10) in Eq. (3.8) and simplifying gives

½2Hð1þ mÞ�rry þ 3N5

2H �rry

ð�rrh � �rrrÞ þ N3�rr 1

"
þ N5

H �rry

#
þ �rrN2N4

4H �rr3
y

N2N3½ � N1
 � �rrm

"
þ �rrN5

2H �rry

#
d�rrr

d�rr

þ �rr
�hh

2
4 þ �rrN5

�hhH �rry
þ �rrN 2

2N4

4H�hh�rr3
y

3
5 d2Y
d�rr2

¼ 0

ð3:12Þ

in which

N4 ¼ ðm� 1Þ�rrm
y þ 1 ð3:13aÞ

N5 ¼ �rrm
y � 1 ð3:13bÞ

If the radial, circumferential and yield stresses are substituted from Eqs. (2.9), (2.10) and (3.1), respectively,
in Eq. (3.12), the result can be cast into the general form given by Eq. (2.38). The numerical solution is
obtained as described in the previous section.

A run is performed to compute the plastic limit angular velocity of a linearly hardening rotating uniform
thickness solid disk by taking H ¼ 0:5, m ¼ 1=3, m ¼ 1 and setting n ¼ 0. Six iterations were performed to
reach the convergence yielding X2 ¼ 2:117331. Gamer (1984) used Tresca’s yield condition, its associated
flow rule and assumed linear strain hardening material behavior to estimate the plastic limit angular ve-
locity of a rotating uniform thickness solid disk. He obtained a consistent closed form solution to his model
and calculated the plastic limit angular velocity as X2 ¼ 2:08043, by using the same hardening parameter

Fig. 11. Comparison of inelastic stresses and displacements by analytical Tresca solution from (Gamer, 1984) for rotating constant

thickness solid disk. Dots represent analytical solution.
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and Poisson’s ratio. Although a different yield condition is used in this work, the result obtained here is in
good agreement with that of Gamer. Furthermore, it is known that plastic limit angular velocities calcu-
lated by von Mises yield condition are slightly higher than those of Tresca (Rees, 1999). The stresses and
displacement corresponding to the fully plastic state are compared to Gamer’s analytical solution in Fig.
11. Although limit angular velocities are slightly different, a good agreement is obtained especially in radial
stress and displacement.

Before the results of variable thickness disks are given, another comparison is made with the literature.
Ma et al. (2001) computed the inelastic deformation of linearly decreasing thickness annular and solid
disks, each of which corresponding to 33% thickness reduction at the edge. These disks can be studied in
this work by taking n ¼ 2=3 and k ¼ 1:0. In addition, we set H ¼ 0:5, m ¼ 1=3 and m ¼ 3 to simulate
nonlinear hardening material behavior. Fig. 12(a) compares the results of rotating solid disk of linearly
varying thickness. The agreement is very poor. This is because Ma et al. computed constant stresses in the
central portion of the disk. Substituting �hhð�rrÞ ¼ ð1� 2=3�rrÞ and �rrr ¼ �rrh ¼ C, where C is a constant, in the
equation of motion, Eq. (2.2), reveals

C ¼ X2�rr
2

ð3� 2�rrÞ

This result is contradictory to �rrr ¼ �rrh ¼ constant. Thus, their estimations fail to satisfy the equation of
motion in the regions of constant radial and circumferential stresses. The results of the stresses in rotating
annular disk of inner radius �rr0 ¼ 0:01 are compared with those of Ma et al. in Fig. 12(b). Again, the
agreement is very poor.

Using the parameters H ¼ 0:5, m ¼ 1=3 and m ¼ 3 the stresses and displacement in rotating solid disks
D1, D2 and D3 in the fully plastic state are calculated and the results are presented in Fig. 13(a), (b) and (c),

Fig. 12. Comparison of inelastic stresses by the solution of Ma et al. (2001) for (a) rotating linearly varying thickness solid disk,

(b) linearly varying thickness annular disk of inner radius �rr0 ¼ 0:01. Dots represent the results of Ma et al.
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Fig. 13. Inelastic stresses and displacements in rotating variable thickness solid disks for (a) n ¼ 0:96 and k ¼ 0:5; (b) n ¼ 0:8 and

k ¼ 1:0; (c) n ¼ 0:4151965 and k ¼ 3:0.
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Fig. 14. Variation of plastic limit angular velocity in variable thickness solid disks with (a) linear hardening (m ¼ 1), (b) nonlinear

hardening (m ¼ 2) and (c) nonlinear hardening (m ¼ 3).
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respectively. The plastic limit angular velocities for these disks are obtained as X2 ¼ 2:274888 for D1,
2.341080 for D2, and 2.346266 for disk D3. As seen in Fig. 13, the radial stress is the largest stress in these
disks and the radial position of d�rrr=d�rr ¼ 0 moves away from the axis as the disk mass decreases.

Variation of plastic limit angular velocities with disk thickness reduction is displayed in Fig. 14(a), (b)
and (c) using k as a parameter for different material parameters m. Fig. 14(a) is obtained for m ¼ 1 which
corresponds to linear hardening material behavior. Fig. 14(b) and (c) correspond to m ¼ 2 and m ¼ 3,
respectively, simulating nonlinear hardening material.

The effect of hardening parameter H on the plastic limit angular velocities is illustrated in Fig. 15(a) for
linear hardening (m ¼ 1). Plastic limit angular velocities increase asH is increased. Finally, Fig. 15(b) shows
X vs. n using H ¼ 0:5 for different material parameters m. The largest limit angular velocities are obtained
for the linear hardening material and it is observed that as m increases limit angular velocities decrease.

4. Concluding remarks

Elastic stresses, displacements and limit angular velocities have been calculated for rotating variable
thickness annular disks, annular disks with rigid inclusion and solid disks. Variable thickness rotating
annular disks and annular disks with rigid inclusion yielded stress profiles similar to those of constant
thickness ones with magnitudes smaller than the corresponding constant thickness disks at the same an-
gular velocity. In contrast, the deformation behavior of variable thickness rotating solid disks differed
significantly from constant thickness disks. The radial stress was found to be the largest principal stress and
reached a maximum at a radial position inside the disk, not at the axis as in constant thickness solid disk.
The location of the maximum radial stress moved away from the axis as the disk mass decreased for the

Fig. 15. Effect of (a) the hardening parameter H, (b) the material parameter m on the calculated plastic limit angular velocities.
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same thickness reduction at the edge. Nevertheless, elastic limit angular velocities were found to increase
with increasing disk thickness reduction and with decreasing disk mass for all disks.

Inelastic deformations and plastic limit angular velocities have been computed using von Mises yield
criterion and its flow rule for linear and nonlinear hardening rotating solid and annular disks. A com-
parison with Tresca’s yield condition showed that the plastic limit angular velocity obtained by von Mises
yield condition is slightly higher than Tresca for the linear hardening material. Plastic limit angular ve-
locities have been found to be affected by the shape of the disk profile significantly. The reduction in the
disk thickness increased plastic limit angular velocities. Lower plastic limit angular velocities have been
obtained for nonlinearly hardening rotating solid disks.

Appendix A. Displacement formulation and solution

Substituting the elastic strains from Eqs. (2.6) and (2.7) in Eqs. (2.3) and (2.4) and solving for the
stresses, the stress-displacement relations are obtained as

�rrrð�rrÞ ¼
m�uuðrÞ þ �rr�uu0ð�rrÞ
�rrð1� m2Þ ðA:1Þ

�rrhð�rrÞ ¼
�uuðrÞ þ �rrm�uu0ð�rrÞ
�rrð1� m2Þ ðA:2Þ

Substituting these stresses in the equation of motion, Eq. (2.2), and simplifying the following differential
equation for the dimensionless radial displacement �uu is obtained.

d2�uu
d�rr2

þ 1

�rr

"
þ
�hh0

�hh

#
d�uu
d�rr

� 1

�rr2

"
� m�hh0

�rr�hh

#
�uu ¼ gð�rrÞ ðA:3Þ

in which

gð�rrÞ ¼ � 1
�

� m2
�
X2�rr ðA:4Þ

Hence the homogeneous equation is obtained by setting g ¼ 0. One solution to the homogeneous equation
is found to be

y1ð�rrÞ ¼ �rrFða; b; c; n�rrÞ ðA:5Þ
where Fða; b; c; xÞ is the hypergeometric function defined by Eq. (2.20) and a, b, c are

a ¼ 1þ k
2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4ð1� kmÞ

p
b ¼ 1þ k

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4ð1� kmÞ

p
c ¼ 3

ðA:6Þ

By using the method of reduction of order the second linearly independent solution is found to be

y2ð�rrÞ ¼ y1ð�rrÞI1ð�rrÞ ðA:7Þ

where

I1ð�rrÞ ¼
Z �rr

�rr0

dn

n�hhðnÞy1ðnÞ2
ðA:8Þ
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Note that as in the stress function solution, this integral contains non-integrable singularity at �rr0 ¼ 0,
accordingly, it is valid for annular disks. The general solution for the radial displacement can be written as

�uuð�rrÞ ¼ C1y1ð�rrÞ þ C2y2ð�rrÞ þ Rð�rrÞ ðA:9Þ

The particular integral solution Rð�rrÞ is obtained by the method of variation of parameters. The result is

Rð�rrÞ ¼ y1ð�rrÞ I1ð�rrÞI2ð�rrÞ
h

� I3ð�rrÞ
i

ðA:10Þ

where

I2ð�rrÞ ¼
Z �rr

�rr0

zy1ðzÞgðzÞ�hhðzÞdz ðA:11Þ

I3ð�rrÞ ¼
Z �rr

�rr0

Z z

�rr0

zy1ðzÞgðzÞ�hhðzÞ
h i 1

n�hhðnÞy1ðnÞ2

" #
dndz ðA:12Þ

Appendix B. Alternate solution for the stress function formulation

To solve the linear differential equation, Eq. (2.14), we first substitute �hh ¼ ð1� n�rrÞk and �hh0 ¼
�knð1� n�rrÞk�1

in this equation, then introduce a new variable z ¼ 1� n�rr and the transformation Y ð�rrÞ ¼
ð1� zÞGðzÞ=n to obtain

zð1� zÞ d
2G
dz2

� ½k þ ð3� kÞz
 dG
dz

þ kð1� mÞG ¼ � 1

n2
ð3

 
þ mÞX2ð1� zÞzkþ1

!
ðB:1Þ

Eq. (B.1) is a hypergeometric differential equation with the homogeneous solution (Abramowitz and Ste-
gun, 1966)

GðzÞ ¼ C1g1ðzÞ þ C2g2ðzÞ ðB:2Þ

where C1 and C2 are arbitrary integration constants and

g1ðzÞ ¼ Fða; b; c; zÞ
g2ðzÞ ¼ z1þkFða� cþ 1; b� cþ 1; 2� c; zÞ

a ¼ 1� k
2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4ð1� kmÞ

p
b ¼ 1� k

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4ð1� kmÞ

p
c ¼ �k

ðB:3Þ

The function Fða; b; c; xÞ in the above equation is the hypergeometric function described by Eq. (2.20). The
general solution for the stress function Y ð�rrÞ takes the form

Y ð�rrÞ ¼ �rr C1Fða; b; c; 1
h

� n�rrÞ þ C2ð1� n�rrÞ1þkFða� cþ 1; b� cþ 1; 2� c; 1� n�rrÞ
i
þ Rð�rrÞ ðB:4Þ

where Rð�rrÞ is the particular solution which can be obtained using variation of parameters. Since the
function Fða; b; c; 1� n�rrÞ is not finite at the axis of the disk, this solution is valid for annular disks.
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Appendix C. Note on the evaluation of hypergeometric functions

The hypergeometric function defined by the series given by Eq. (2.20) converges slowly. At first sight, it
may be thought that summing up several terms of the series would be sufficient to get the correct numerical
value of the function. But this may not be true. As jxj ! 1 the rate of convergence is extremely slow. For
example, to get the true value 13.3244385 of the hypergeometric function Fð0:9; 0:9; 1:3; 0:99Þ 1892 terms
should be added. Care must be exercised in calculating hypergeometric functions especially when jxj ap-
proaches to 1. To be able to add such a large number of terms, each term should be factorized. For ex-
ample, the fourth term T4 in the series is obtained by the following calculation sequence:

t1 ¼
a
c
; t2 ¼

a þ 1

c þ 1
; t3 ¼

a þ 2

c þ 2
; t̂t1 ¼

b
1
; t̂t2 ¼

b þ 1

2
; t̂t3 ¼

b þ 2

3
ðC:1Þ

Then

T4 ¼
aða þ 1Þða þ 2Þbðb þ 1Þðb þ 2Þ

cðc þ 1Þðc þ 2Þ3! x3 ¼ t1 � t2 � t3 � t̂t1 � t̂t2 � t̂t3 � x � x � x ðC:2Þ

This calculation procedure avoids evaluation of factorials of large numbers which is practically not pos-
sible. Furthermore, the following linear transformation (Abramowitz and Stegun, 1966) is useful in in-
creasing the rate of convergence of the series:

F ða; b; c; xÞ ¼ ð1� xÞc�a�bF ðc � a; c � b; c; xÞ ðC:3Þ
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